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ABSTRACT  
 
Receptivity of steady shear flows is the main issues for analysis overall acoustic scattering for airfoil trailing 

edge and near-nozzle lip. This paper focuses on the development of accurate and robust numerical methods to 
accompany high-order computational aeroacoustics algorithms towards the simulation of trailing edge scattering 
problem in Category 4 and on the analysis of the generation mechanism of the instability wave by the interaction of 
trailing edge, shear layer and initial disturbance. The numerical methods is based on Grid-Optimized Dispersion-
Relations-Preserving (GODRP) schemes developed with grid-optimization algorithm to make finite difference 
equations possess the same dispersion relations as the corresponding partial differential equations on general 
geometries. Acoustic/viscous splitting techniques, based on flow noise solvers using acoustic governing equations 
such as simplified linearized Euler equations and full linearized Euler equations, are utilized to solve the receptivity 
by the interactions of trailing edge, shear layer and initial disturbance. The numerical analysis consists of two steps. 
First, steady mean flow is determined by solution of the compressible Navier-Stokes equation using Roe’s scheme 
for spatial discretization and local time stepping for time discretization. Then, unsteady trailing edge scattering 
phenomena are simulated with the CAA solvers. Through the comparison of acoustic simulations, it will be shown 
that mean flow gradient terms play a crucial role in triggering the instability wave  

1. INTRODUCTION 
 
At subsonic flow, one of the primary sources of trailing edge noise corresponds to receptivity, excitation of 

shear layer. The various mechanisms contributing to such receptivity on trailing edge include the interaction 
between vortices, shear layer, and unsteady disturbances. Especially, in the receptivity process, shear layer 
instability waves are generated (ref. 1). These waves excite shear layer and produce sound. The noise generated by 
these phenomena has become an important issue for the design of engine, nozzle and airfoil trailing edge.  

In the present decade, considerable progress in computational aeroacoustics (CAA) has been achieved. The 
unsteady governing equations are discretized and solved for time-dependent flow variables, which includes the 
mean flow and the flow or acoustic disturbances. High-order schemes are required for discretization to reduce 
dissipation and dispersion errors. Recently, Grid-Optimized Dispersion-Relation-Preserving (GODRP) scheme (ref. 
2) have been developed with the grid-optimization algorithm to make the finite difference equations possess the 
same dispersion relations as the corresponding partial differential equations and, at the same time, optimized 
dissipation characteristics at the given grids that are the non-uniform Cartesian or curvilinear grids. In this work, the 
GODRP schemes are utilized to solve this complex geometry problem with curvilinear grids on a guarantee of local 
and, thus resultant global dispersion-relation-preserving properties. In addition, high-order schemes support the 
formation of spurious modes at the boundaries of the computational domain. Careful attention for unsteady 
boundary treatment is needed to produce the physically correct disturbance field. Therefore, accurate nonreflecting 
boundary conditions are necessary for computational aeroacoustics. The sponge zone technique by Baily & Bogey 
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conditions. 
Acoustic/viscous splitting technique is utilized for the analysis of the receptivity phenomena. These methods 

are based on the concept of variable decomposition in the governing equations into a source component and an 
acoustic one, which leads to two separate sets of equations governing viscous flow field and acoustic disturbance 
field, respectively. This approach is based on the assumption that the wave propagation is essentially inviscid in 
nature and sound perturbations are so small that their contribution to the convection velocity of the flow is 
negligible in most cases. The most important advantage of the decomposition method is that algorithms are used that 
best suited to each solver: traditional CFD algorithms for the viscous flow and CAA algorithms for the acoustic 
perturbations. 

It is very difficult to construct a single body-fitted mesh for thin plate which gives the proper resolution to both 
the near source region and far acoustic field. This difficulty is overcome by the use of a multi-scale overset grid 
technique, where body-fitted meshes are applied only near the plate and Cartesian background mesh is applied 
elsewhere. 

Problem statement will be briefly demonstrated in Section 2. The numerical methods together with the 
governing equations and numerical boundary treatment will be discussed in Section 3, which is followed by 
numerical results and discussion will be provided in Section 4.  

2. PROBLEM STATEMENT  
 
This benchmark problem consists of a two-dimensional compressible mixing layer flow formed by a splitter 

plate with blunt trailing edge. First, a steady laminar mixing layer solution is determined by 2D compressible 
laminar Navier-Stokes equation.  
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The lower stream has free stream Mach number M1=0.6 with a boundary layer momentum thickness 1 while the 
upper stream has free stream Mach number M2=0.1 with momentum thickness 2 = 1 and plate width is 2 1. Initial 
pressure pulse and acoustic/vortical disturbance ares imposed in a steady state mean flow. Finally, initial value 
problems are solved for each case. The initiated pressure pulse and acoustic/vortical disturbances are defined as 
follows: 
 
a Initial value problem of a pressure pulse:                            b Initial value problem of a initiated vortical disturbance:  

 
where 350 −=x , 80 −=y  , 4.1=γ  2 20.1, 1 ( 35) ( 8)vM and r x yσ= = = + + + )  

 

3. NUMERICAL METHODS 
 

3.1. Solution Algorithm and Numerical Schemes 
 

The wave propagation itself is hardly affected by viscosity and contribution of sound perturbations to the 
convection velocity of flow is negligible. Furthermore, nonlinear terms are generally small. Therefore, sound 
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(ref. 3) is used with the nonreflecting boundary condition of Tam & Dong(ref. 4) as the inflow/outflow boundary 

propagation is essentially described by linearized Euler equation.   
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Here, U is the unknown vector, E and F are the linear flux vectors and the vector H consists of mean flow gradient 
terms, which are equal to zero when mean flow is uniform. The vector S represents possible unsteady sources in the 
flow. For the efficient description of later numerical results, some terms are defined such that Full Linearized Euler 
Equation (FLEE) represents Eq. (2) and Simplified Linearized Euler Equations (SLEE) is defined as without H. The 
SLEE is proposed by Bogey et al. (ref. 5) to suppress the instability waves in shear layer problem. In section 4, the 
results of FLEE will be compared with results of SLEE. 

In present problem, Hybrid method (CFD for the base mean flow + CAA for acoustic scattering) is utilized. The 
solution procedure for trailing edge scattering problem has two parts. First, a steady mean flow solution to 
governing equation (1) is determined by 2D compressible laminar Navier-Stokes solution. Then acoustic 
simulations are carried out with the linearized Euler equation with the prescribed base flow and initial disturbances. 
The time dependent Euler equations (2) are discretized in space using the GODRP scheme (ref. 2) together with 
selective artificial damping (ref. 6) to damp out numerical oscillations and fourth order dissipation to suppress high-
frequency modes. Temporal integration of the discretized equations is carried out using the third order explicit 
Adams-Bashford method (ref. 6).  In this problem, the used grid was a H-hype rectangular grid with 601× 401 in the 
background block and 266× 45 in body-fitted block, which computational mesh is built up from a non-uniform grid 
clustered around the shear layer.  
 

3.2. Boundary Condition Formulation 
 

Because the computational domain is usually finite, boundary conditions must be imposed at the edge of the 
grid. These boundary conditions can generate undesirable spurious fluctuations. Therefore, accurate nonreflecting 
boundary conditions are necessary for computational aeroacoustics. On the surfaces, the slip boundary condition is 
enforced by the ghost point method. The contents in detail are introduced. 

 
Solid Wall Boundary Conditions 

 
Solid wall boundary (Fig. 1 5 ) is mainly implemented by setting normal gradient of pressure at the solid wall 

faces equal to zero. Many methods have been developed and are useful for treating wall boundaries. Some of the 
more recent work in this area has been implemented by Tam & Dong (ref. 7). Tam & Dong developed wall 
boundary conditions with their Dispersion Relation Preserving (DRP) scheme and this method minimizes the 
number of required ghost values. An analysis of these conditions shows that they are capable of numerically 
simulating the presence of a solid wall without introducing significant errors associated with spurious numerical 
wave generation and numerical boundary layers. Therefore, the wall conditions implemented here are based on the 
approach by Tam & Dong. To set the normal pressure derivative to zero, a ghost point was used inside the wall for 
only the normal pressure derivative. Following equation is derived from momentum equations and setting the 
normal velocity at wall to zero. 
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Inflow/Outflow Boundary Conditions & Sponge zone 
 
The formulation of precise boundary condition 

is important for acoustic computation. Spurious 
waves generated when fluctuations leave the 
boundary region must be minimized. In present 
problem, the nonreflecting boundary condition of 
Tam & Dong (ref. 7) is implemented. When only 
acoustic fluctuation reach the boundary (for inflow 
and lateral boundary, Fig. 1 1 , 2 , 3 ), the 
radiation boundary conditions are applied. Outflow 
boundary conditions (Fig. 1 4 ) are also necessary 
when fluctuations quantities ( '''' ,,, pvuρ ) reach 
the boundary (outflow boundary).  

When strong vortical wave reaches the outflow 
boundary, this vortical wave causes an acoustic 
wave reflection at the outflow boundary. This 
spurious wave contaminates computational domain 
solution. For the minimization of a spurious wave, 
the decrease of vortical wave strength is needed at 
the vicinity of outflow boundary. A sponge zone (Fig. 1 6 ) with grid stretching is then built to dissipate 
aerodynamic fluctuation before their reaching the outflow boundary. Larger size of sponge zone generates the 
smaller reflection of spurious wave. However, large size of sponge zone requires large computational domain and 
computational time, the selection of suitable size is important. In present problem, the sponge zone implemented by 
Baily & Bogey (ref. 7) is used.  
 

4. NUMERICAL RESULTS AND DISCUSSIONS 
 

4.1 Steady Mean Flow Results 
 
Steady mean flow is determined by 2D Navier-Stokes 

Equation using Roe’s scheme (ref. 8) for spatial 
discretization and local time stepping for time 
discretization to further accelerate convergence to steady 
state. to further accelerate convergence to steady state. Free 
stream conditions above the plate are T1=T2 and 1= 2. 
Wall boundary conditions are the no slip condition and the 
isothermal condition. Nonreflecting boundary condition is 
used at the outflow boundary. 

 Fig. 2 shows mean flow streamwise velocity profiles at 
the several lines for the mixing layer which develops 
downstream of the plate. Near the edge, a small wake 
component exists due to the co-flow stream. As the mixing 
layer develops downstream, the wake ingredient almost 
disappears and the profile becomes similar to a single 
inflection point shear layer. The flow profiles change rather 
quickly near the plate edge. Then the flow settles into a 
slowly growing, mildly non-parallel shear layer in further 
downstream.  

 
 
 
 
 

Figure. 1 Computation domain and applied boundary
conditions 
1 , 2 , 3 : Radiation boundary condition 
4           : Outflow boundary condition 
5           : Wall boundary condition 
6           : Sponge zone & grid stretching 
7           : Interpolation Region 

Figure. 2 Mean flow streamwise velocities profile
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4.2 Acoustic Results 

Overset Grids 

 
Figure. 3 Overset grids for the acoustic simulations 

 
Construction of a single body-fitted mesh for a rounded trailing edge is very difficult. Furthermore, when the mesh 
is irregular or highly distorted, the numerical solutions in finite difference methods are degraded. These difficulties 
are overcome by the use of an overset grid technique. To retain the accuracy of the numerical schemes, high-order 
interpolation scheme (Fig.1 7  ) is required for information exchange between two grid structures. In present 
problem, Bin’s interpolation algorithm (ref. 9) is utilized.  

 
Sound Generation by Interacting with Vortical Disturbance and Edge 
 

 
The response to pressure pulse a                                        The response to vortical disturbance b  

Figure. 4 Comparison of instantaneous pressure fluctuations at time = 90 
 

Figure 4 shows the pressure distributions for the cases a  and b  at t = 90 by using the FLEE. When vortical 
disturbance is imposed on the steady mean flow, acoustic wave is generated by the interaction of the trailing edge 
and vorticity wave, of which phenomena cannot found in case a where only pressure pulse is imposed. However, 
instability waves are generated to start to flow downstream for both of cases.  
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Instability Waves 
 

The amplitude of instability wave increases exponentially along streamwise (x-axis) and time. This instability 
waves flow to downstream with mean flow velocity, interacting with shear flow. These instability waves, which 
have strong strength, can cause a spurious wave reflection at the outflow boundary. So accurate outflow boundary 
condition and suitable size of sponge zone are required. Instability waves will go out of the computational domain at 
approximately t = 1400. Fig. 5 show the pressure distributions along y = -3 at t = 200, 400, 600,…..1200 for initial 
value problem b . 

 
 

   

   
Figure. 5 Instantaneous pressure fluctuations along y = -3 at each time. 

 
 

 
Figure. 6 Comparison of full LEE and simple LEE to pressure pulse a  at t=200 
(a) Instantaneous pressure fluctuation along y=-3 to full LEE and simple LEE 
(b) Pressure fluctuation contour to full LEE at t=200, 15level from -0.001(black) to 0.0015(white) 
(c) Pressure fluctuation contour to simple LEE at t=200, 15level from -0.001(black) to 0.0015(white) 

 
However, it is found that the instability waves are not generated by using the SLEE for both of cases. Fig. 6 

shows the comparison of the numerical results using the SLEE and the FLEE. From this figure, it is found that the 
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acoustic simulation using the SLEE does not generate the instability wave which exist in the results using the FLEE. 
The SLEE is proposed by Bogey et al. to prevent the exponential development of linear instability waves excited by 
source terms introduced into FLEE, through the mean shear ∂ 1/∂x2 in the vector H. However, this instability waves 
are unphysical wave. But, Baron (ref. 10) shows that the same instability waves are generated by using the full 
Navier-Stokes equations. This means that instability wave in this benchmark problem is physical wave. From this, 
the mean flow gradient terms, especially the mean shear ∂ 1/∂x2 in H, seem to play a crucial role in the instability 
wave generation through the interactions of the initial disturbance and the trailing edge.  
 
 
Time history of the instantaneous pressure fluctuation 
 

                          
 

Figure. 7 Time history of the instantaneous pressure fluctuation from the FLEE 
(a) The response to pressure pulse a   and (b) The response to vortical disturbance b  

 
Fig. 7 shows the time histories of pressure at the locations (-30,1) and (50, 50) for both of cases. Initial disturbance 
and diffracted waves are found for both of cases. However, the instabilities cannot be found in these locations. This 
result is also different from that of Baron et al. (please, refer to the solution comparison paper of Category 4, 
problem 2). It is found in our numerical simulations that the instability waves don’t pass through the location 
(50,50) but the same thing cannot be said for that of Baron et al.. At this moment, this difference in the zone affected 
by the instability wave is difficult to interpret, and only one conjecture can be proposed. Baron et al. use the full 
Navier-Stokes equations while we use the LEE. Different terms of the governing equations, such as the nonlinear 
interactions and viscous terms, may affect the zone affected by the instability wave.    
 

CONCLUSIONS  
 

Category 4, problem 2 is solved by using the acoustic/viscous splitting techniques of which acoustic solver is 
governed by the LEE. CAA solver is based on the GODRP schemes to guarantee the dispersion-relation-preserving 
properties of the numerical scheme on the curvilinear grids. The overset grid technique is also applied to resolve 
complex geometries. Trailing edge scattering problem is tackled by using the FLEE and the SLEE. Through the 
comparison of both numerical results, it is found that the mean shear term ∂ 1/∂x2 plays a crucial role in generating 
the instabilities wave in the trailing edge scattering phenomena.  

Future work will be aimed at the acoustic simulation using the full Navier-Stokes Eq. and its extension to 3-
dimesional engine nacelle geometries.  
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